Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
2.
Eur J Cancer ; 181: 102-118, 2023 03.
Article in English | MEDLINE | ID: covidwho-2230357

ABSTRACT

The novel coronavirus SARS-CoV-2 and the associated infectious disease COVID-19 pose a significant challenge to healthcare systems worldwide. Patients with cancer have been identified as a high-risk population for severe infections, rendering prophylaxis and treatment strategies for these patients particularly important. Rapidly evolving clinical research, resulting in the recent advent of various vaccines and therapeutic agents against COVID-19, offers new options to improve care and protection of cancer patients. However, ongoing epidemiological changes and rise of new virus variants require repeated revisions and adaptations of prophylaxis and treatment strategies to meet these new challenges. Therefore, this guideline provides an update on evidence-based recommendations with regard to vaccination, pharmacological prophylaxis and treatment of COVID-19 in cancer patients in light of the currently dominant omicron variants. It was developed by an expert panel of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) based on a critical review of the most recent available data.


Subject(s)
COVID-19 , Communicable Diseases , Neoplasms , Humans , COVID-19/prevention & control , COVID-19/complications , SARS-CoV-2 , Neoplasms/therapy , Neoplasms/drug therapy , Communicable Diseases/complications , Communicable Diseases/drug therapy , Vaccination
5.
Immunity ; 2022.
Article in English | EuropePMC | ID: covidwho-1989998

ABSTRACT

SARS-CoV-2 infection and vaccination generates enormous host response heterogeneity and an age-dependent loss of immune response quality. How the pre-exposure T cell repertoire contributes to this heterogeneity is poorly understood. We combined analysis of SARS-CoV-2-specific CD4+ T cells pre- and post-vaccination with longitudinal T cell receptor tracking. We identified strong pre-exposure T cell variability that correlated with subsequent immune response quality and age. High-quality responses, defined by strong expansion of high-avidity spike-specific T cells, high interleukin 21 production, and specific immunoglobulin G, depended on an intact naïve repertoire and exclusion of pre-existing memory T cells. In the elderly, T cell expansion from both compartments was severely compromised. Our results reveal that an intrinsic defect of the CD4+ T cell repertoire causes the age-dependent decline of immune response quality against SARS-CoV-2 and highlight the need for alternative strategies to induce high-quality T cell responses against newly arising pathogens in the elderly. Graphical Determinants of immune response quality to SARS-CoV-2 remain poorly defined. Saggau et al. examine spike-specific naïve and memory T cells pre- and post-vaccination and track pre-existing memory T cell receptors. They define T cell parameters of high-quality vaccine responses and identify high pre-existing memory and low naïve T cell contributions as predictors of low-quality responses, particularly in the elderly.

6.
Clin Imaging ; 90: 11-18, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1956102

ABSTRACT

PURPOSE: Common CT abnormalities of pulmonary aspergillosis represent a cavity with air-meniscus sign, nodule, mass, and consolidation having an angio-invasive pattern. This study aims to conduct a systematic review and an individual patient-level image analysis of CT findings of COVID-19-associated pulmonary aspergillosis (CAPA). METHODS: A systematic literature search was conducted to identify studies reporting CT findings of CAPA as of January 7, 2021. We summarized study-level clinical and CT findings of CAPA and collected individual patient CT images by inviting corresponding authors. The CT findings were categorized into four groups: group 1, typical appearance of COVID-19; group 2, indeterminate appearance of COVID-19; group 3, atypical for COVID-19 without cavities; and group 4, atypical for COVID-19 with cavities. In group 2, cases had only minor discrepant findings including solid nodules, isolated airspace consolidation with negligible ground-glass opacities, centrilobular micronodules, bronchial abnormalities, and cavities. RESULTS: The literature search identified 89 patients from 25 studies, and we collected CT images from 35 CAPA patients (mean age 62.4 ± 14.6 years; 21 men): group 1, thirteen patients (37.1%); group 2, eight patients (22.9%); group 3, six patients (17.1%); and group 4, eight patients (22.9%). Eight of the 14 patients (57.1%) with an atypical appearance had bronchial abnormalities, whereas only one (7.1%) had an angio-invasive fungal pattern. In the study-level analysis, cavities were reported in 12 of 54 patients (22.2%). CONCLUSION: CAPA can frequently manifest as COVID-19 pneumonia without common CT abnormalities of pulmonary aspergillosis. If abnormalities exist on CT images, CAPA may frequently accompany bronchial abnormalities.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Aged , COVID-19/complications , Data Analysis , Humans , Lung/diagnostic imaging , Male , Middle Aged , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/diagnostic imaging , Tomography, X-Ray Computed/methods
9.
Biomedicines ; 10(4)2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1776131

ABSTRACT

In December 2019, the first case of COVID-19 was reported and since then several groups have already published that the virus can be present in the testis. To study the influence of SARS-CoV-2 which cause a dysregulation of the androgen receptor (AR) level, thereby leading to fertility problems and inducing germ cell testicular changes in patients after the infection. Formalin-Fixed-Paraffin-Embedded (FFPE) testicular samples from patients who died with or as a result of COVID-19 (n = 32) with controls (n = 6), inflammatory changes (n = 9), seminoma with/without metastasis (n = 11) compared with healthy biopsy samples (n = 3) were analyzed and compared via qRT-PCR for the expression of miR-371a-3p. An immunohistochemical analysis (IHC) and ELISA were performed in order to highlight the miR-371a-3p targeting the AR. Serum samples of patients with mild or severe COVID-19 symptoms (n = 34) were analyzed for miR-371a-3p expression. In 70% of the analyzed postmortem testicular tissue samples, a significant upregulation of the miR-371a-3p was detected, and 75% of the samples showed a reduced spermatogenesis. In serum samples, the upregulation of the miR-371a-3p was also detectable. The upregulation of the miR-371a-3p is responsible for the downregulation of the AR in SARS-CoV-2-positive patients, resulting in decreased spermatogenesis. Since the dysregulation of the AR is associated with infertility, further studies have to confirm if the identified dysregulation is regressive after a declining infection.

10.
J Clin Microbiol ; 60(4): e0229821, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1759280

ABSTRACT

Critically ill patients with coronavirus disease 2019 (COVID-19) may develop COVID-19-associated pulmonary aspergillosis (CAPA), which impacts their chances of survival. Whether positive bronchoalveolar lavage fluid (BALF) mycological tests can be used as a survival proxy remains unknown. We conducted a post hoc analysis of a previous multicenter, multinational observational study with the aim of assessing the differential prognostic impact of BALF mycological tests, namely, positive (optical density index of ≥1.0) BALF galactomannan (GM) and positive BALF Aspergillus culture alone or in combination for critically ill patients with COVID-19. Of the 592 critically ill patients with COVID-19 enrolled in the main study, 218 were included in this post hoc analysis, as they had both test results available. CAPA was diagnosed in 56/218 patients (26%). Most cases were probable CAPA (51/56 [91%]) and fewer were proven CAPA (5/56 [9%]). In the final multivariable model adjusted for between-center heterogeneity, an independent association with 90-day mortality was observed for the combination of positive BALF GM and positive BALF Aspergillus culture in comparison with both tests negative (hazard ratio, 2.53; 95% CI confidence interval [CI], 1.28 to 5.02; P = 0.008). The other independent predictors of 90-day mortality were increasing age and active malignant disease. In conclusion, the combination of positive BALF GM and positive BALF Aspergillus culture was associated with increased 90-day mortality in critically ill patients with COVID-19. Additional study is needed to explore the possible prognostic value of other BALF markers.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aspergillus , Bronchoalveolar Lavage Fluid , COVID-19/complications , Critical Illness , Galactose/analogs & derivatives , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/complications , Invasive Pulmonary Aspergillosis/diagnosis , Mannans , Mycology , Prognosis , Sensitivity and Specificity
13.
J Hematol Oncol ; 14(1): 168, 2021 10 14.
Article in English | MEDLINE | ID: covidwho-1468074

ABSTRACT

BACKGROUND: Patients with hematological malignancies (HM) are at high risk of mortality from SARS-CoV-2 disease 2019 (COVID-19). A better understanding of risk factors for adverse outcomes may improve clinical management in these patients. We therefore studied baseline characteristics of HM patients developing COVID-19 and analyzed predictors of mortality. METHODS: The survey was supported by the Scientific Working Group Infection in Hematology of the European Hematology Association (EHA). Eligible for the analysis were adult patients with HM and laboratory-confirmed COVID-19 observed between March and December 2020. RESULTS: The study sample includes 3801 cases, represented by lymphoproliferative (mainly non-Hodgkin lymphoma n = 1084, myeloma n = 684 and chronic lymphoid leukemia n = 474) and myeloproliferative malignancies (mainly acute myeloid leukemia n = 497 and myelodysplastic syndromes n = 279). Severe/critical COVID-19 was observed in 63.8% of patients (n = 2425). Overall, 2778 (73.1%) of the patients were hospitalized, 689 (18.1%) of whom were admitted to intensive care units (ICUs). Overall, 1185 patients (31.2%) died. The primary cause of death was COVID-19 in 688 patients (58.1%), HM in 173 patients (14.6%), and a combination of both COVID-19 and progressing HM in 155 patients (13.1%). Highest mortality was observed in acute myeloid leukemia (199/497, 40%) and myelodysplastic syndromes (118/279, 42.3%). The mortality rate significantly decreased between the first COVID-19 wave (March-May 2020) and the second wave (October-December 2020) (581/1427, 40.7% vs. 439/1773, 24.8%, p value < 0.0001). In the multivariable analysis, age, active malignancy, chronic cardiac disease, liver disease, renal impairment, smoking history, and ICU stay correlated with mortality. Acute myeloid leukemia was a higher mortality risk than lymphoproliferative diseases. CONCLUSIONS: This survey confirms that COVID-19 patients with HM are at high risk of lethal complications. However, improved COVID-19 prevention has reduced mortality despite an increase in the number of reported cases.


Subject(s)
COVID-19/complications , Hematologic Neoplasms/complications , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Europe/epidemiology , Female , Hematologic Neoplasms/epidemiology , Hematologic Neoplasms/therapy , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Registries , Risk Factors , SARS-CoV-2/isolation & purification , Young Adult
16.
Clin Microbiol Infect ; 28(4): 580-587, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1375916

ABSTRACT

OBJECTIVES: Coronavirus disease 2019 (COVID-19) -associated pulmonary aspergillosis (CAPA) has emerged as a complication in critically ill COVID-19 patients. The objectives of this multinational study were to determine the prevalence of CAPA in patients with COVID-19 in intensive care units (ICU) and to investigate risk factors for CAPA as well as outcome. METHODS: The European Confederation of Medical Mycology (ECMM) conducted a multinational study including 20 centres from nine countries to assess epidemiology, risk factors and outcome of CAPA. CAPA was defined according to the 2020 ECMM/ISHAM consensus definitions. RESULTS: A total of 592 patients were included in this study, including 11 (1.9%) patients with histologically proven CAPA, 80 (13.5%) with probable CAPA, 18 (3%) with possible CAPA and 483 (81.6%) without CAPA. CAPA was diagnosed a median of 8 days (range 0-31 days) after ICU admission predominantly in older patients (adjusted hazard ratio (aHR) 1.04 per year; 95% CI 1.02-1.06) with any form of invasive respiratory support (HR 3.4; 95% CI 1.84-6.25) and receiving tocilizumab (HR 2.45; 95% CI 1.41-4.25). Median prevalence of CAPA per centre was 10.7% (range 1.7%-26.8%). CAPA was associated with significantly lower 90-day ICU survival rate (29% in patients with CAPA versus 57% in patients without CAPA; Mantel-Byar p < 0.001) and remained an independent negative prognostic variable after adjusting for other predictors of survival (HR 2.14; 95% CI 1.59-2.87, p ≤ 0.001). CONCLUSION: Prevalence of CAPA varied between centres. CAPA was significantly more prevalent among older patients, patients receiving invasive ventilation and patients receiving tocilizumab, and was an independent strong predictor of ICU mortality.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Aged , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Critical Illness , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Invasive Pulmonary Aspergillosis/drug therapy , Invasive Pulmonary Aspergillosis/epidemiology , Mycology , Pulmonary Aspergillosis/complications , Pulmonary Aspergillosis/epidemiology , Risk Factors , SARS-CoV-2
19.
Intensive Care Med ; 47(8): 819-834, 2021 08.
Article in English | MEDLINE | ID: covidwho-1279405

ABSTRACT

PURPOSE: Invasive pulmonary aspergillosis (IPA) is increasingly reported in patients with severe coronavirus disease 2019 (COVID-19) admitted to the intensive care unit (ICU). Diagnosis and management of COVID-19 associated pulmonary aspergillosis (CAPA) are challenging and our aim was to develop practical guidance. METHODS: A group of 28 international experts reviewed current insights in the epidemiology, diagnosis and management of CAPA and developed recommendations using GRADE methodology. RESULTS: The prevalence of CAPA varied between 0 and 33%, which may be partly due to variable case definitions, but likely represents true variation. Bronchoscopy and bronchoalveolar lavage (BAL) remain the cornerstone of CAPA diagnosis, allowing for diagnosis of invasive Aspergillus tracheobronchitis and collection of the best validated specimen for Aspergillus diagnostics. Most patients diagnosed with CAPA lack traditional host factors, but pre-existing structural lung disease and immunomodulating therapy may predispose to CAPA risk. Computed tomography seems to be of limited value to rule CAPA in or out, and serum biomarkers are negative in 85% of patients. As the mortality of CAPA is around 50%, antifungal therapy is recommended for BAL positive patients, but the decision to treat depends on the patients' clinical condition and the institutional incidence of CAPA. We recommend against routinely stopping concomitant corticosteroid or IL-6 blocking therapy in CAPA patients. CONCLUSION: CAPA is a complex disease involving a continuum of respiratory colonization, tissue invasion and angioinvasive disease. Knowledge gaps including true epidemiology, optimal diagnostic work-up, management strategies and role of host-directed therapy require further study.


Subject(s)
COVID-19 , Invasive Pulmonary Aspergillosis , Pulmonary Aspergillosis , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/diagnosis , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/epidemiology , SARS-CoV-2
20.
EMBO Mol Med ; 13(8): e14150, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1271067

ABSTRACT

Innate immunity triggers responsible for viral control or hyperinflammation in COVID-19 are largely unknown. Here we show that the SARS-CoV-2 spike protein (S-protein) primes inflammasome formation and release of mature interleukin-1ß (IL-1ß) in macrophages derived from COVID-19 patients but not in macrophages from healthy SARS-CoV-2 naïve individuals. Furthermore, longitudinal analyses reveal robust S-protein-driven inflammasome activation in macrophages isolated from convalescent COVID-19 patients, which correlates with distinct epigenetic and gene expression signatures suggesting innate immune memory after recovery from COVID-19. Importantly, we show that S-protein-driven IL-1ß secretion from patient-derived macrophages requires non-specific monocyte pre-activation in vivo to trigger NLRP3-inflammasome signaling. Our findings reveal that SARS-CoV-2 infection causes profound and long-lived reprogramming of macrophages resulting in augmented immunogenicity of the SARS-CoV-2 S-protein, a major vaccine antigen and potent driver of adaptive and innate immune signaling.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Immunity, Innate , Inflammasomes , Interleukin-1beta , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL